Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness.

Identifieur interne : 002852 ( Main/Exploration ); précédent : 002851; suivant : 002853

Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness.

Auteurs : Yasutomo Hoshika [Japon] ; Kenji Omasa ; Elena Paoletti

Source :

RBID : pubmed:22723982

Descripteurs français

English descriptors

Abstract

Steady-state and dynamic gas exchange responses to ozone visible injury were investigated in an ozone-sensitive poplar clone under field conditions. The results were translated into whole tree water loss and carbon assimilation by comparing trees exposed to ambient ozone and trees treated with the ozone-protectant ethylenediurea (EDU). Steady-state stomatal conductance and photosynthesis linearly decreased with increasing ozone visible injury. Dynamic responses simulated by severing of a leaf revealed that stomatal sluggishness increased until a threshold of 5% injury and was then fairly constant. Sluggishness resulted from longer time to respond to the closing signal and slower rate of closing. Changes in photosynthesis were driven by the dynamics of stomata. Whole-tree carbon assimilation and water loss were lower in trees exposed to ambient O(3) than in trees protected by EDU, both under steady-state and dynamic conditions. Although stomatal sluggishness is expected to increase water loss, lower stomatal conductance and premature leaf shedding of injured leaves aggravated O(3) effects on whole tree carbon gain, while compensating for water loss. On average, WUE of trees exposed to ambient ozone was 2-4% lower than that of EDU-protected control trees in September and 6-8% lower in October.

DOI: 10.1371/journal.pone.0039270
PubMed: 22723982
PubMed Central: PMC3377656


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness.</title>
<author>
<name sortKey="Hoshika, Yasutomo" sort="Hoshika, Yasutomo" uniqKey="Hoshika Y" first="Yasutomo" last="Hoshika">Yasutomo Hoshika</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Omasa, Kenji" sort="Omasa, Kenji" uniqKey="Omasa K" first="Kenji" last="Omasa">Kenji Omasa</name>
</author>
<author>
<name sortKey="Paoletti, Elena" sort="Paoletti, Elena" uniqKey="Paoletti E" first="Elena" last="Paoletti">Elena Paoletti</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22723982</idno>
<idno type="pmid">22723982</idno>
<idno type="doi">10.1371/journal.pone.0039270</idno>
<idno type="pmc">PMC3377656</idno>
<idno type="wicri:Area/Main/Corpus">002987</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002987</idno>
<idno type="wicri:Area/Main/Curation">002987</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002987</idno>
<idno type="wicri:Area/Main/Exploration">002987</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness.</title>
<author>
<name sortKey="Hoshika, Yasutomo" sort="Hoshika, Yasutomo" uniqKey="Hoshika Y" first="Yasutomo" last="Hoshika">Yasutomo Hoshika</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Omasa, Kenji" sort="Omasa, Kenji" uniqKey="Omasa K" first="Kenji" last="Omasa">Kenji Omasa</name>
</author>
<author>
<name sortKey="Paoletti, Elena" sort="Paoletti, Elena" uniqKey="Paoletti E" first="Elena" last="Paoletti">Elena Paoletti</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Ozone (adverse effects)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Stomata (physiology)</term>
<term>Populus (physiology)</term>
<term>Trees (physiology)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (physiologie)</term>
<term>Carbone (métabolisme)</term>
<term>Eau (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Ozone (effets indésirables)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (physiologie)</term>
<term>Stomates de plante (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
<term>Eau</term>
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Stomata</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Steady-state and dynamic gas exchange responses to ozone visible injury were investigated in an ozone-sensitive poplar clone under field conditions. The results were translated into whole tree water loss and carbon assimilation by comparing trees exposed to ambient ozone and trees treated with the ozone-protectant ethylenediurea (EDU). Steady-state stomatal conductance and photosynthesis linearly decreased with increasing ozone visible injury. Dynamic responses simulated by severing of a leaf revealed that stomatal sluggishness increased until a threshold of 5% injury and was then fairly constant. Sluggishness resulted from longer time to respond to the closing signal and slower rate of closing. Changes in photosynthesis were driven by the dynamics of stomata. Whole-tree carbon assimilation and water loss were lower in trees exposed to ambient O(3) than in trees protected by EDU, both under steady-state and dynamic conditions. Although stomatal sluggishness is expected to increase water loss, lower stomatal conductance and premature leaf shedding of injured leaves aggravated O(3) effects on whole tree carbon gain, while compensating for water loss. On average, WUE of trees exposed to ambient ozone was 2-4% lower than that of EDU-protected control trees in September and 6-8% lower in October.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22723982</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness.</ArticleTitle>
<Pagination>
<MedlinePgn>e39270</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0039270</ELocationID>
<Abstract>
<AbstractText>Steady-state and dynamic gas exchange responses to ozone visible injury were investigated in an ozone-sensitive poplar clone under field conditions. The results were translated into whole tree water loss and carbon assimilation by comparing trees exposed to ambient ozone and trees treated with the ozone-protectant ethylenediurea (EDU). Steady-state stomatal conductance and photosynthesis linearly decreased with increasing ozone visible injury. Dynamic responses simulated by severing of a leaf revealed that stomatal sluggishness increased until a threshold of 5% injury and was then fairly constant. Sluggishness resulted from longer time to respond to the closing signal and slower rate of closing. Changes in photosynthesis were driven by the dynamics of stomata. Whole-tree carbon assimilation and water loss were lower in trees exposed to ambient O(3) than in trees protected by EDU, both under steady-state and dynamic conditions. Although stomatal sluggishness is expected to increase water loss, lower stomatal conductance and premature leaf shedding of injured leaves aggravated O(3) effects on whole tree carbon gain, while compensating for water loss. On average, WUE of trees exposed to ambient ozone was 2-4% lower than that of EDU-protected control trees in September and 6-8% lower in October.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hoshika</LastName>
<ForeName>Yasutomo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Omasa</LastName>
<ForeName>Kenji</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Paoletti</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66H7ZZK23N</RegistryNumber>
<NameOfSubstance UI="D010126">Ozone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010126" MajorTopicYN="N">Ozone</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22723982</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0039270</ArticleId>
<ArticleId IdType="pii">PONE-D-12-05918</ArticleId>
<ArticleId IdType="pmc">PMC3377656</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Dec 5;302(5651):1716-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Jun;94(3):395-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Oct;155(3):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Apr;134(3):439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Oct;137(3):483-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16005760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Aug;56(418):2195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1986 Apr;167(4):554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24240372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(1):109-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Jan;29(1):67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May;62(3):442-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20128877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Nov;11 Suppl 1:24-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19778365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2010 Aug;158(8):2664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20537773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Jul;136(1):33-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(1):100-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 Mar;157(3):865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19081168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Feb;145(3):869-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16769164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 May;157(5):1453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18977576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Jun;147(3):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17034915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2009 Feb 15;407(5):1631-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19136142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Nov;150(1):85-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1150-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Apr;146(3):640-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Atmos Environ. 1976;10(11):969-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1008919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 1998;101(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15093093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Apr;33(4):510-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2011 Dec;159(12):3283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21831492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2001;113(2):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11383335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jul 10;424(6945):183-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853954</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
<orgName>
<li>Université de Tokyo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Omasa, Kenji" sort="Omasa, Kenji" uniqKey="Omasa K" first="Kenji" last="Omasa">Kenji Omasa</name>
<name sortKey="Paoletti, Elena" sort="Paoletti, Elena" uniqKey="Paoletti E" first="Elena" last="Paoletti">Elena Paoletti</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Hoshika, Yasutomo" sort="Hoshika, Yasutomo" uniqKey="Hoshika Y" first="Yasutomo" last="Hoshika">Yasutomo Hoshika</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002852 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002852 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22723982
   |texte=   Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22723982" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020